Bayesian Optimization with Safety Constraints: Safe and Automatic Parameter Tuning in Robotics
نویسندگان
چکیده
Robotics algorithms typically depend on various parameters, the choice of which significantly affects the robot’s performance. While an initial guess for the parameters may be obtained from dynamic models of the robot, parameters are usually tuned manually on the real system to achieve the best performance. Optimization algorithms, such as Bayesian optimization, have been used to automate this process. However, these methods may evaluate parameters during the optimization process that lead to safety-critical system failures. Recently, a safe Bayesian optimization algorithm, called SAFEOPT, has been developed and applied in robotics, which guarantees that the performance of the system never falls below a critical value; that is, safety is defined based on the performance function. However, coupling performance and safety is not desirable in most cases. In this paper, we define separate functions for performance and safety. We present a generalized SAFEOPT algorithm that, given an initial safe guess for the parameters, maximizes performance but only evaluates parameters that satisfy all safety constraints with high probability. It achieves this by modeling the underlying and unknown performance and constraint functions as Gaussian processes. We provide a theoretical analysis and demonstrate in experiments on a quadrotor vehicle that the proposed algorithm enables fast, automatic, and safe optimization of tuning parameters. Moreover, we show an extension to contextor environmentdependent, safe optimization in the experiments.
منابع مشابه
Automatic tuning of a behavior-based guidance algorithm for formation flight of quadrotors
This paper presents a tuned behavior-based guidance algorithm for formation flight of quadrotors. The behavior-based approach provides the basis for the simultaneous realization of different behaviors such as leader following and obstacle avoidance for a group of agents; in our case they are quadcopters. In this paper optimization techniques are utilized to tune the parameters of a behavior-bas...
متن کاملLocally-Biased Bayesian Optimization using Nonstationary Gaussian Processes
Bayesian optimization is becoming a fundamental global optimization algorithm in many applications where sample efficiency is needed, ranging from automatic machine learning, robotics, reinforcement learning, experimental design, simulations, etc. The most popular and effective Bayesian optimization method relies on a stationary Gaussian process as surrogate. In this paper, we present a novel n...
متن کاملAutomatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objectiv...
متن کاملBayesian Optimization in High Dimensions via Random Embeddings
Bayesian optimization techniques have been successfully applied to robotics, planning, sensor placement, recommendation, advertising, intelligent user interfaces and automatic algorithm configuration. Despite these successes, the approach is restricted to problems of moderate dimension, and several workshops on Bayesian optimization have identified its scaling to high dimensions as one of the h...
متن کاملOptimization as Estimation with Gaussian Processes in Bandit Settings
Recently, there has been rising interest in Bayesian optimization – the optimization of an unknown function with assumptions usually expressed by a Gaussian Process (GP) prior. We study an optimization strategy that directly uses an estimate of the argmax of the function. This strategy offers both practical and theoretical advantages: no tradeoff parameter needs to be selected, and, moreover, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1602.04450 شماره
صفحات -
تاریخ انتشار 2016